skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Tongchao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Amidst the rapid expansion of the electric vehicle industry, the need for alternative battery technologies that balance economic viability with sustainability has never been more critical. Here, we report that common lithium salts of Li2CO3 and Li2SO4 are transformed into cathode active mass in Li-ion batteries by ball milling to form a composite with Cu2S. The optimal composite cathode comprising Li2CO3, Li2SO4, and Cu2S, with a practical active mass loading of 12.5-13.0 mg/cm2, demonstrates a reversible capacity of 247 mAh/g based on the total mass of Cu2S and the lithium salts, a specific energy of 716 Wh/kg, and a stable cycle life. This cathode chemistry rivals layered oxide cathodes of Li-ion batteries in energy density but at substantially reduced cost and ecological footprint. Mechanistic investigations reveal that in the composite Li2CO3 serves as the primary active mass, Li2SO4 enhances kinetic properties and reversibility, and Cu2S stabilizes the resulting anionic radicals for reversibility as a binding agent. Our findings pave the way for directly using precursor lithium salts as cathodes for Li-ion batteries to meet the ever-increasing market demands sustainably. 
    more » « less
  2. A lithium-air battery based on lithium oxide (Li2O) formation can theoretically deliver an energy density that is comparable to that of gasoline. Lithium oxide formation involves a four-electron reaction that is more difficult to achieve than the one- and two-electron reaction processes that result in lithium superoxide (LiO2) and lithium peroxide (Li2O2), respectively. By using a composite polymer electrolyte based on Li10GeP2S12nanoparticles embedded in a modified polyethylene oxide polymer matrix, we found that Li2O is the main product in a room temperature solid-state lithium-air battery. The battery is rechargeable for 1000 cycles with a low polarization gap and can operate at high rates. The four-electron reaction is enabled by a mixed ion–electron-conducting discharge product and its interface with air. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)